Specialized Runge-Kutta methods for index 2 differential-algebraic equations

نویسنده

  • Laurent O. Jay
چکیده

We consider the numerical solution of systems of semi-explicit index 2 differential-algebraic equations (DAEs) by methods based on RungeKutta (RK) coefficients. For nonstiffly accurate RK coefficients, such as Gauss and Radau IA coefficients, the standard application of implicit RK methods is generally not superconvergent. To reestablish superconvergence projected RK methods and partitioned RK methods have been proposed. In this paper we propose a simple alternative which does not require any extra projection step and does not use any additional internal stage. Moreover, symmetry of Gauss methods is preserved. The main idea is to replace the satisfaction of the constraints at the internal stages in the standard definition by enforcing specific linear combinations of the constraints at the numerical solution and at the internal stages to vanish. We call these methods specialized Runge-Kutta methods for index 2 DAEs (SRK-DAE 2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lagrange-d’Alembert SPARK Integrators for Nonholonomic Lagrangian Systems

Lagrangian systems with ideal nonholonomic constraints can be expressed as implicit index 2 differential-algebraic equations (DAEs) and can be derived from the Lagrange-d’Alembert principle. We define a new nonholonomically constrained discrete Lagrange-d’Alembert principle based on a discrete Lagrange-d’Alembert principle for forced Lagrangian systems. Nonholonomic constraints are considered a...

متن کامل

Projected Runge-kutta Methods for Differential Algebraic Equations of Index 3

In the present paper we introduce a new class of methods, Projected RungeKutta methods, for the solution of index 3 differential algebraic equations (DAEs) in Hessenberg form. The methods admit the integration of index 3 DAEs without any drift effects. This makes them particularly well suited for long term integration. Finally, implemented on the basis of the Radau5 code, the projected Runge-Ku...

متن کامل

Efficient Runge-Kutta integrators for index-2 differential algebraic equations

In seeking suitable Runge-Kutta methods for differential algebraic equations, we consider singly-implicit methods to which are appended diagonally-implicit stages. Methods of this type are either similar to those of Butcher and Cash or else allow for the importation of a final derivative from a previous step. For these two classes, with up to three additional diagonallyimplicit stages, we deriv...

متن کامل

Solution of Index 2 Implicit Differential-algebraic Equations by Lobatto Runge-kutta Methods

We consider the numerical solution of systems of index 2 implicit differential-algebraic equations (DAEs) by a class of super partitioned additive Runge-Kutta (SPARK) methods. The families of Lobatto IIIA-B-C-C-D methods are included. We show super-convergence of optimal order 2s−2 for the s-stage Lobatto families provided the constraints are treated in a particular way which strongly relies on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2006